Postdoc 'Deep Learning in Neurotrauma Imaging'

In this project we are going to develop deep learning algorithms to automate these tasks. To this end you will also develop deep learning algorithms for the automated segmentation of the main anatomical structures in ...

22 dagen geleden

Arbeidsvoorwaarden

Standplaats:
Landelijk / geen vaste standplaats
Dienstverband:
Tijdelijk contract / Tijdelijke opdracht
Uren per week:
36 uur
Opleidingsniveau:
Postdoctoraal

Functieomschrijving

An external insult to the brain can cause different degrees of damage. This ranges from none to mild, to coma and death. Imaging plays an important role for diagnosis and treatment. In particular cerebral microbleeds, which are very small bleeds in the brain visible as black dots in magnetic resonance (MR) images are an important marker for the severity of trauma and may have prognostic value for the patient. However, the detection and quantification of cerebral microbleeds are time consuming and prove to be a challenge even for an experienced neuroradiologist.

In this project we are going to develop deep learning algorithms to automate these tasks. To this end you will also develop deep learning algorithms for the automated segmentation of the main anatomical structures in the brain in different types of MR images.

This is an ERA-NET Neuron project funded by the Netherlands Organisation for Scientific Research (NWO) and the Netherlands Brain Foundation and is part of a larger European consortium, which aims at the development of a new classification system for traumatic brain injury. A summary can be found here. As part of this consortium we have access to multi-center patient imaging data collected in the CENTER-TBI study for the development and validation of our methodology.

This is a unique and exciting project in which you potentially can make a real impact. Trauma image analysis is a largely unexplored field. You will be part of an international team of enthusiastic clinical experts.

Functie-eisen

Positions can be filled by either PhD students or postdocs. Here you can find our PhD position.

You should be a creative and enthusiastic researcher with a PhD degree in Computer Science, Data Science, Physics, Engineering or Biomedical Sciences or similar, with a clear interest in machine learning, deep learning, image analysis and an affinity with medical applications. Good communication skills and expertise in software development, preferably in Python/C++, are essential. Experience with deep learning is a pre.

Conditions

Scale 10/11: max. € 67574 gross income per year at full employment (incl. vacation bonus and end of year payments)

The postdoc position is for two years. Your performance will be evaluated after 1 year. If the evaluation is positive, the contract will be extended by 1 year.

Additional information

Upon commencement of employment we require a certificate of conduct (Verklaring Omtrent het Gedrag, VOG). Radboud university medical center’s HR Department will apply for this certificate on your behalf.

Information
Additional information about the vacancy can be obtained from Rashindra Manniesing, PhD, Rashindra.Manniesing@radboudumc.nl. (This e-mail address is to be used for information purposes only. Use the ‘Apply’ button to apply for the position.)

Application

Applicants should send a letter of intent outlining special interest in the position, a CV, list of followed courses and grades and preferably a reprint of the Master thesis or any publications in English you have written.

Bedrijfsomschrijving

The Radboudumc center advances human knowledge by conducting biomedical, translational and clinical research in order to improve wellbeing.

Our key strength is medical life-sciences and clinical practice, with an impressive infrastructure comprising state-of-the-art technology platforms and (translational) research facilities. The Radboudumc is therefore uniquely positioned in the emerging Euregio and Dutch healthcare infrastructure to play a leading role in the new healthcare paradigm of prediction, prevention and personalised medicine.

The Radboudumc focuses on scientific health challenges of today, with an eye on emerging diseases of the future.

Our mission: ‘to have a significant impact on healthcare’.

The Diagnostic Image Analysis Group (DIAG) is a research division of the Department of Radiology and Nuclear Medicine of the Radboud University Medical Center Nijmegen. The focus of the Diagnostic Image Analysis group is the development and validation of novel methods in a broad range of medical imaging applications. Research topics include image analysis, image segmentation, machine learning, and the design of decision support systems. Application areas include neuro, breast, prostate, lung and retina imaging and digital pathology. Key to the success of the group is close cooperation with clinicians. Currently the group consists of around 40 researchers. Check our deep learning paper overview to get an idea of our work in this field.

Solliciteren?

Middels onderstaande knop kun je direct solliciteren op deze vacature.

Reageer op deze vacature