Helaas, deze vacature staat inmiddels niet meer online

Kijk gerust verder naar andere vacatures.

PhD on Atomic Layer Deposition of Electrode Materials for CO2 Electrolysis

The Plasma and Materials Processing (PMP) group1 at the Applied Physics department of the Eindhoven University of Technology (TU/e) and the Catalytic and …

2 maanden geleden

Arbeidsvoorwaarden

Standplaats:
de Rondom, Eindhoven, Noord-Brabant
Dienstverband:
Tijdelijk contract / Tijdelijke opdracht
Uren per week:
38 uur
Opleidingsniveau:
WO

Functieomschrijving

The Plasma and Materials Processing (PMP) group1 at the Applied Physics department of the Eindhoven University of Technology (TU/e) and the Catalytic and Electrochemical Processes for Energy Applications (CEPEA) group2 at the Solar Fuels theme of Dutch Institute For Fundamental Energy Research (DIFFER) are looking for excellent candidates for an open PhD position in the field of novel electrode materials for CO2 electrolysis.

This PhD project will be carried out in close collaboration between the two groups which both are located in the TU/e Campus. The novel electrode materials will be engineered by atomic layer deposition (ALD) at TU/e and then characterized by state-of-the art diagnostics. In parallel, they will be integrated and tested in a solid polymer electrolyte reactor at DIFFER, where they performance towards CO2 electrolysis will be evaluated as function of the electro-catalysts' structural characteristics. You will work closely with other researchers in the PMP group at TU/e and CEPEA group at DIFFER under the supervision of dr. M. Creatore (PMP, TU/e) and dr. M. Tsampas (CEPEA, DIFFER).

1 https://www.tue.nl/en/university/departments/applied-physics/research/research-groups/plasma-and-materials-processing-pmp/

2 DIFFER is the Dutch Institute For Fundamental Energy Research, www.differ.nl/research/cepea

Background and objective

Increasing concerns about the future global energy supply and environmental consequences of high CO2 emissions drive the development of sustainable energy sources to replace fossil fuels. Most sustainable technologies produce electricity, such as wind and solar PV. Large-scale replacement of fossil sources also requires technologies that convert the surplus electrical energy generated from renewables into storable chemical fuels such as hydrogen, methane and liquid fuels. Such technology helps offsetting the intermittency of renewables by storing peak energy production in a more useful and higher volumetric energy density form. Moreover they provide pathways to sustainable chemistry where renewable electricity and (air captured) CO2 are the feedstock to provide platform molecules.

The main objective of this PhD project is to develop a solar-driven electrochemical system which can cost effectively and selectively convert CO2 and H2O into (i) methane and (ii) methanol. Methane is selected due to its compatibility with the existing infrastructure for natural gas storage, distribution and consumption. The target of methanol is based on its high value in chemical industry and also its easiness in transportation due to its liquid nature at ambient conditions.

Tasks of the PhD student

Novel electrode materials will be synthesized and integrated in a solid polymer electrolyte reactor. Specifically, supported in gas diffusion electrodes (GDEs) will be adopted because of their microstructure which can host high surface area electro-catalysts, therefore leading to a pronounced increase in current density. The chosen technology to develop controlled distribution of electro-catalysts on GDEs is atomic layer deposition (ALD). The latter has emerged as powerful tool for the atomically precise design and synthesis of catalytic structures. ALD is performed by the sequential exposure of the substrate to two (or more) different gas species separated in time by purging steps. Each gas species reacts with the substrate up to saturation, through a self-limiting reaction mechanism. Because of its self-limiting nature, the main advantages of ALD are the control of film thickness at the atomic scale, high conformity with surface features and high reproducibility.

The cathode will be based on Cu and Mo catalysts. It has been demonstrated that CO2 electro-reduction is a structural sensitive reaction since the particle size and density/loading can have significant impact on both activity and selectivity. Thus, these two parameters in addition with the protection strategies and support modification approaches will be tuned toward efficient and stable electro-catalysts.

The selected anode will be NiCo2O4. It has been demonstrated that by increasing the loading of NiCo2O4 prepared with conventional techniques (i.e. low surface area electro-catalysts) the performance can overpass the state of the art, expensive noble metal anode (i.e. IrO2).

Finally, both anode and cathode will be implemented and tested in a reactor similar to the one used in Proton Exchange Membrane fuel cells. This design offers several advantages over the conventional one which utilizes aqueous electrolytes, such as compactness, scalability, fast dynamic response, broad operational range. Moreover, the PEM design allows gas phase operation, which circumvents the low solubility of CO2 in aqueous media. An alkaline polymeric membrane (OH- conductivity) will serve as the electrolyte.

Functie-eisen

The successful candidate will have:

  • A Bachelor degree in (Applied) Physics or Chemistry with top grades. The candidate should hold (or expect to obtain very soon) a Master of Science degree in (Applied) Physics, Chemistry, Nanotechnologies or Material Chemistry.
  • Expertise in either gas phase deposition technologies (Chemical Vapor Deposition, Plasma-enhanced Chemical Vapor Deposition, Atomic Layer Deposition) or in low temperature electro-catalysis is strongly recommended. Also, experience in solid state electrochemistry is very welcome, as well as in standard thin film diagnostics.
  • A strong motivation and independence to tackle and complete challenging, multi-faceted problems.
  • The ambition to excel at multi-disciplinary research ranging from synthetic chemistry to energy storage devices prototyping.
  • Excellent collaboration and communication skills to bridge between various disciplines and to work in a very international and competitive environment.
  • The start date is as soon as possible.
  • Arbeidsvoorwaarden

  • An exciting research project in a novel research field.
  • A full-time appointment for four years at Eindhoven University of Technology, with an intermediate evaluation after 12 months.
  • Gross monthly salary from € 2.222 (first year) to € 2.840 (fourth year), in line with the Collective Agreement for Dutch Universities.
    An attractive package of fringe benefits, including a personal development program for PhDs (PROOF program), holiday and end-of-year allowances, and excellent sports facilities.
    Information about the PROOF Program can be found here.
  • Additionele informatie

    More information can be obtained from:
  • dr. Mariadriana Creatore, Department of Applied Physics, Eindhoven University of Technology. Phone +31 40 247 4223, m.creatore@tue.nl
  • dr. Michalil Tsampas, Dutch Institute For Fundamental Energy Research. Phone +31 40 333 4820, m.tsampas@differ.nl

  • If you are interested in this PhD position and would like to apply, we request you to use the button "Apply now".

    Your application can be addressed to dr. M. Creatore. Applications must include all of the following: (i) a personal motivation letter, (ii) a Curriculum Vitae including the names and contact details of at least two references, (iii) transcripts of BSc and MSc degrees with courses and grades, (iv) a digital copy of BSc and MSc theses (if these are very large, you can send them by email)

    Only complete applications will be considered. Screening of applicants will start as soon as applications are received and will continue until the position has been filled.