1. Vacatures
  2. Technische Universiteit Eindhoven (TU/e)
  3. Postdoc in the project FUN-NOTCH: Fundamentals of the Nonlinear Optical Channel

Helaas, deze vacature staat inmiddels niet meer online

Kijk gerust verder naar andere vacatures.

Postdoc in the project FUN-NOTCH: Fundamentals of the Nonlinear Optical Channel

MotivationFibre optics are critical infrastructure for society because they carry nearly all the global Internet traffic. For a long time, optical fibre …

10 maanden geleden


de Rondom, Eindhoven, Noord-Brabant
Tijdelijk contract / Tijdelijke opdracht
Uren per week:
38 uur


Fibre optics are critical infrastructure for society because they carry nearly all the global Internet traffic. For a long time, optical fibre systems were thought to have infinite information-carrying capabilities. With current traffic demands growing by a factor between 10 and 100 every decade, however, this is no longer the case. In fact, it is currently unknown if the installed optical infrastructure will manage to cope with these demands in the future, or if we will face the so-called 'capacity crunch'. This potential capacity crunch is due to a power dependent nonlinear distortion in single mode fibres arising from a phenomenon known as the Kerr effect. The action of this nonlinear effect in combination with dispersion and noise is modelled using a stochastic partial nonlinear differential equation known as the Nonlinear Schrödinger Equation (NLSE). This is the starting point for this project.

The FUN-NOTCH Project
To satisfy traffic demands, transceivers are being operated near the nonlinear regime of the fibres. In this regime, a power-dependent nonlinear phenomenon known as the Kerr effect becomes the key impairment that limits the information-carrying capability of optical fibres. The intrinsic nonlinear nature of these fibres makes the analysis very difficult and has led to a series of unanswered fundamental questions about data transmission in nonlinear optical fibres, and nonlinear media in general. For example, the maximum amount of information that optical fibres can carry in the highly nonlinear regime is still unknown, and the design of transceivers well-suited for this regime is also completely unexplored. These fundamental questions are the key objective of this project which will ultimately give an answer to the capacity crunch question.

FUN-NOTCH is a 5-year research grant (ERC Starting Grant) financed by the European Research Council. This grant involves one principal investigator (Dr. A. Alvarado) as well as two fully-funded PhD students and two postdoctoral researchers. Some of the problems/topics that this project will address are discrete- and continuous-time channel models in the highly nonlinear regime, information theory and channel capacity analysis of the nonlinear fiber optical channel, modulation, signal shaping, and forward error correction. This project also involves experimental validations.

Academic and Research Environment
Eindhoven University of Technology (TU/e) is one of Europe's top technological universities, situated in the heart of one of Europe's largest high-tech innovation ecosystems. Research at TU/e is characterized by a combination of academic excellence and a strong real-world impact. This impact is often obtained via close collaboration with high-tech industries. This exciting PhD project will be carried out at the signal processing systems (SPS) group, in particular in the ICT Lab. This project is carried out also in close collaboration with the electro-optical communications (ECO) group as well as with industrial partners both groups collaborate with. The position will include international short- and medium-term research visits to academic or industrial research institutions as well as the possibility of co-supervising MSc and PhD students in the ICT Lab. For more details see:


We are hiring 1 postdoctoral researcher for 4 years. The candidate should be able bridge the distance between advanced fundamental concepts and theories on the one hand, and practical implementation and evaluation of these concepts on the other hand. They should be able to think out of the box, distinguish main lines from details, and provide structure to their work, have excellent multidisciplinary team working and communication skills, and be fluent in English.

The candidate must have PhD degree in nonlinear optics, applied mathematics, signal processing, communications, or information theory. The degree should generally not be older than three years. Affinity with optical communications is beneficial but not mandatory. Experience with the NLSE or with optical physical layer, including channel modeling, is desirable. Candidates with a degree in applied mathematics or nonlinear physics are also welcome to apply.


  • a challenging job in a dynamic and ambitious university and a stimulating internationally renowned research environment;
  • full-time temporary appointment for 4 years;
  • gross monthly salaries and conditions are in accordance with the Collective Labor Agreement of the Dutch Universities (CAO NU), scale 10, depending on your experience.
  • additionally, 8% holiday and 8.3% end-of-year annual supplements;
  • an extensive package of fringe benefits (e.g. excellent technical infrastructure, the possibility of child care and excellent sports facilities);
  • starting date: July 2018.
  • Additionele informatie

  • For more information about the project, please contact dr. Alex Alvarado, Assistant Professor, A.Alvarado@tue.nl.
  • Informal queries can be sent via email: alex.alvarado@ieee.org.
  • For information concerning employment conditions you can contact Mrs. Tanja van Waterschoot, t.a.m.v.waterschoot@tue.nl .
  • More information on employment conditions can be found here: www.tue.nl/en/university/working-at-tue/working-conditions/.
  • Tax benefits and information international employees:
  • Contact: ICT Lab, Signal Processing Systems (SPS) Group Department of Electrical Engineering

  • Application

    If interested, please use 'apply now'-button at the top of this page and please send:

    A copy of your PhD thesis and relevant submitted or published papers. For the motivation letter, make sure you clearly explain why your background matches this particular position and why this particular project is interesting to you.

    Please keep in mind; you can upload only 5 documents up to 2 MB each!